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1

Introduction

Within the architectural industry, there is wide agreement that the next generation of ar-
chitectural design tools must provide support for parametric design. Such design tools
enable relations between geometric entities to be specified using constraints. Specifying
relationships between geometric entities allows a solution family – a set of elements that
are topologically equivalent in terms of their constituent parts and the relationships be-
tween them – to be defined. The ability to create solution families is extremely powerful:
multiple design options can be created very quickly, allowing the solution space to be
fully explored. In addition to this, the speed with which design alterations can be made
enables computer-aided design to become a far more interactive and creative process.
However, the nature of constraint-based design requires users to work at a new level of
abstraction. Architectural firms currently address this issue by employing programmers
to use constraint-based design tools on behalf of architects. This is clearly a usability
problem.

A crucial development would be to eliminate or reduce this usability problem, enabling
architects to use constraint-based CAD tools themselves. However, addressing this us-
ability problem is not solely an issue of user interface design. Rather, the challenge is that
of designing a programming language to be used by non-programmers. Such program-
ming languages are known as end-user programming languages.

The aim of this project is to create a constraint-based CAD package with a constraint rep-
resentation that will address the usability problems found in existing constraint-based
CAD packages. This is clearly an interdisciplinary task, requiring work to be under-
taken involving constraint solvers, end-user programming language design, and design
of constraint-based CAD systems. A set of usability requirements for the project emerged
from structured interviews with users of constraint-based CAD systems at an interna-
tional architecture and design practice.

Several possible design approaches were considered initially. The one finally adopted is
a novel concept, based on methodologies originally proposed for the display of layered
information on air traffic control displays.

This report describes the preparation undertaken for the project, as well as the imple-
mentation and evaluation processes.
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2

Preparation

The chapter summarises the work undertaken prior to implementation. The require-
ments of my proposed system are outlined, and current research in relevant areas of
computer science is discussed. The software engineering techniques employed in the
project are outlined, and a description of the tools used in implementation is given.

2.1 Requirements Analysis

Prior to writing my project proposal, I met with the developer of Custom Objects[1], an
existing constraint-based CAD package. This resulted in the identification of the core
components of my project and the technical requirements of each component.

In order to gain a thorough understanding of the usability requirements of constraint-
based CAD systems, I arranged to spend a day at Foster and Partners (an international
architecture and design practice). Structured interviews were conducted with four users
of existing constraint-based CAD systems. The interviews were based around the follow-
ing topics:

� The types of constraints regularly encountered in architectural and design work.

� The capabilities and limitations of existing constraint-based and dimension-driven
CAD systems.

� The types of visual constraint representation that architects and designers would
like to use.

� The reconciliation of the creative aspects of architecture and design with the more
mathematical approach of defining constraints.

Discussion of these topics with users enabled me to establish a set of usability require-
ments for the project.

2.1.1 Requirements

The geometric primitives provided should be sufficient to allow the creation of simple ge-
ometric structures. Direct manipulation of geometric entities must be possible. Creation
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CHAPTER 2. PREPARATION 2.2. RESEARCH

of entities that are not part of the final drawing but are used in the process of constrain-
ing other entities (i.e. construction entities) should be possible. These entities should be
visually distinguishable from entities that are part of the drawing itself.

The constraints provided should include geometric relationships such as coincidence, as
well as dimensioned constraints such as the Euclidean distance between points and lines.

The primary requirement of a constraint solver for use in CAD systems is the ability to
satisfy constraints sufficiently fast that real-time interaction with the system is possible.
In addition, the ability to handle under-specified constraint systems is desirable.

The visual representation should ensure that there is a clear mapping between each con-
straint and the geometry constrained by it. In addition, the type of each constraint and
any values used (if appropriate) should be visible to the user. Constraint creation and
editing processes should involve direct manipulation of the constraint representation.

Facilities should be provided for saving drawings and subsequently reloading them. The
data representation for files should be clearly structured, easily extensible, and in a for-
mat that could be used by software. An obvious choice for such a data representation is
XML.

2.2 Research

The aim of this section is to provide the reader with an overview of current research in the
areas of computer science relevant to the project. The areas covered are constraint-based
CAD, constraint solving techniques, visual language theory and the Extensible Markup
Language (XML). Investigation of these research topics took the form of reading relevant
research papers, web-pages and books.

2.2.1 Existing Constraint-Based CAD Systems

Existing constraint-based CAD systems were analysed with respect to geometric prim-
itives and constraints provided, constraint solver used, visual representation of con-
straints and interaction style.

Geometric Primitives

The primary geometric primitives provided by both conventional and constraint-based
CAD packages are generally a subset of points, line segments, lines, circles, arcs, poly-
lines, polygons[20]. More complicated primitives, such as Bezier curves, are unnecessary
since all drawings must be converted to the primitives above prior to the realisation of
the product or building being designed.

In addition to primary geometric primitives, some CAD systems provide construction
objects[33, 12] (geometric entities that are not part of the final drawing, but are used in
the process of constraining entities belonging to the final drawing). Construction objects
(usually points, lines and circles) are generally created and manipulated in an identical
fashion to their primary counterparts.

3



CHAPTER 2. PREPARATION 2.2. RESEARCH

Constraints

Some systems[33, 30, 12] provide constraints that act upon entire geometric primitives.
Other systems[15] only allow the user to specify constraints on points. Once the con-
straints have been enforced, determining the locations of the points, the rest of the draw-
ing is filled in. The constraints supported by both these approaches can be divided into
two categories:

� Dimensioned constraints, such as constraining the Euclidean distance between points
and a lines (or line segments), the angle between two lines (or line segments), or the
radius of a circle.

� Non-dimensioned relationships, including congruence, coincidence, tangency and
orthogonality.

It is important that the constraints implemented are not dependent on the particular con-
straint solver used, thus allowing other solvers to be substituted without significantly
affecting the system as a whole.

Constraint Solvers

A wide variety of techniques for satisfying constraints have been employed in constraint-
based CAD packages. For instance, Juno[15] and Converge[30] use Newton-Raphson
iteration, Briar[12] uses differential constraint methods, and ThingLab II[18] uses local
propagation. Constraint solving is a substantial research field in its own right, used in
many different areas of computer science, and there are many approaches to constraint
satisfaction, each of which has advantages and disadvantages with respect to suitability
for use in CAD systems.

Visual Representation of Constraints

Existing constraint-based CAD packages tend to use one of three types of constraint rep-
resentation: textual languages for describing constraints, schematic representations, and
graphical annotations directly superimposed on the geometry.

Textual languages, used in systems such as Juno[15], have the advantage of being ed-
itable. However, if the usability of such textual languages is analysed using a technique
such as Cognitive Dimensions of Notations[13], several problems are highlighted:

� The closeness of mapping between the programming world and problem world is
distant.

� Creation of textual description has a higher abstraction barrier than direct manipula-
tion.

� Textual descriptions of constraints tend to be more diffuse than graphical represen-
tations.

� Describing constraints textually makes a higher demand on cognitive resources than
direct manipulation.
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Schematic representations, such as the dependency graph used in Custom Objects[1],
have an advantage over textual representations because they can be directly manipu-
lated. However, usability problems still arise due to the separation of constraint repre-
sentation and drawing.

Visual representations (superimposed on the drawing) are used in Converge[30] and
Briar[12]. These have significant advantages over textual and schematic representations.
In particular, integration of the constraint representation and drawing makes dependen-
cies between geometry and constraints explicit. Also, the same gestures can be used for
creation and manipulation of both constraints and geometry.

Interaction Style

A major reason for the popularity of direct manipulation drawing programs is the fluidity
and ease with which geometry can be created. It is crucial that the creation and manipula-
tion of constraints does not detract from this. Some constraint-based CAD systems[30, 33]
allow the user to create and manipulate constraints in exactly the same fashion as that
used for geometric entities. This has the advantage that only one interaction paradigm
has to be mastered by the user. Additionally, users of a system that makes use of the
same method for creation or manipulation of both geometric entities and constraints will
be far less likely to make errors due to confusion over which method should be used for
creation or manipulation of any particular entity. Other systems[12] make use of more
radical approaches. However, such approaches can impair usability.

2.2.2 Constraint Solving Techniques

There are many different approaches to constraint solving. When choosing a constraint
solver for a CAD system, the types of constraint supported by different constraint solving
techniques must be considered. It is also crucial to consider the efficiency of the constraint
solver – the ability to solve constraints at speeds that enable real-time interaction with the
system is vital.

Constraint solvers for CAD applications should be able to handle ambiguous or under-
constrained systems. A constraint problem is well-constrained if the number of remain-
ing degrees of freedom after the constraint have been specified is zero. In other words,
a unique solution to the constraint problem exists. Clearly this is desirable. An over-
constrained system is where the number of remaining degrees of freedom is negative –
too many constraints are specified for a solution to be found. An under-constrained sys-
tem is where the system has a positive (and non-zero) number of remaining degrees of
freedom, thus resulting in several valid solutions. This situation often arises in constraint-
based CAD. Therefore, when choosing a constraint solver for a constraint-based CAD
system, the constraint solver should ideally handle such cases without requiring addi-
tional input from the user.

Local Propagation Solvers

Local propagation solvers are often used in graphical applications. They operate by prop-
agating degrees of freedom, states or values. Constraints are represented as an undirected
graph, with variables as nodes and constraints as edges. The solver then attempts to di-
rect the graph so that the value of each variable can be determined. Local propagation
is very efficient and supports arbitrary domains. However, LP solvers cannot simultane-
ously handle multiple constraints.
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Iterative Numeric Solvers

Iterative numeric solvers use methods such as Newton-Raphson, and Sutherland’s re-
laxation technique. They can handle simultaneous non-linear constraints, but are not
usually efficient enough to be used as the main constraint solver for CAD systems (their
performance can be O(N

3

)). Also, iterative techniques can only identify the locally opti-
mal solution. In some cases they may not converge on a solution at all, even if one exists.
Iterative numeric solvers are often used in situations where other methods have failed.

Direct Numeric Solvers

Direct numeric techniques, such as Gaussian elimination, attempt to determine an exact
solution using symbolic manipulation of constraint equations. They are able to solve
simultaneous linear equations, but may not be able to handle under-constrained systems.
Direct numeric solvers tend to be more efficient than iterative numeric solvers, but less
efficient than some local propagation solvers.

Geometric Solvers

Geometric solvers[33] are closely related to local propagation solvers. Geometric degrees
of freedom are symbolically analysed, often using a graph to represent the constraints.
Despite their similarity to local propagation solvers, geometric solving algorithms can be
more complicated, thus making them somewhat more difficult to implement.

Choice of Constraint Solving Technique

The primary requirement of a constraint solving algorithm for a CAD system is speed. It
was therefore felt that iterative numeric techniques would be unsuitable for use in this
project. The more general constraint solving techniques available allow greater flexibility
in the design and implementation of constraints. This was considered to be advanta-
geous. Of the constraint solving techniques considered, local propagation is the most
general. Finally, ease of implementation was felt to be important. Local propagation
solvers are relatively simple to implement, highly efficient and extremely general.

It was therefore decided that local propagation was the most suitable constraint solving
technique for this project.

2.2.3 Selection of a Local Propagation Algorithm

Local propagation solvers can vary in several ways:

� Support for one-way or multi-way constraints.

� Use of constraint hierarchies.

� Support for cyclic subsolvers.

� Support for multi-output constraints.

These differences, and their advantages and disadvantages, must be considered when
choosing a local propagation algorithm.
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One-Way Local Propagation Constraint Solvers

One-way solvers are the simplest type of local propagation solver – they need only deter-
mine which constraints should be enforced and in which order. This is because one-way
LP solvers can only enforce a particular constraint using one method. For example, con-
sider a constraint such as x = y + z=2. This constraint will only ever be enforced by
setting x as opposed to setting y or z.

One-way LP solvers represent constraint equations as a directed graph with variables
as nodes of the graph and constraints as sets of edges (see Figure 2.1). When the value
of a variable is changed, the system can be returned to a state satisfying the constraints
by enforcing the constraints in the graph in topological order. Topological sorting of
the constraints can be performed using a depth-first search of the constraint graph since
the graph is not permitted to contain cycles. The computational complexity of this is
O(V + C), where C is the number of constraints in the constraint graph and V is the
number of variables.

w y

z

x

Figure 2.1: Directed constraint graph for constraints x = y + z=2, y = w

2

+ 4 and z = 5.

Some one-way local propagation solvers separate constraint solving into two phases –
planning (which involves sorting the graph) and execution (which only involves enforc-
ing the constraints). The graph only needs to be sorted when the topology of the con-
straint graph changes (i.e. when constraints are added or removed), whereas enforcing
constraints occurs far more often (i.e. whenever the user drags a geometric entity). There-
fore, if the topologically sorted graph is maintained, enforcing the constraints does not
require the graph to be sorted.

Implementation of one-way local propagation solvers is extremely easy, and they can
be very efficient. However, they are not very powerful due to the fact that they do not
support multi-way constraints, cyclic subsolvers or constraint hierarchies.

Multi-Way Local Propagation Solvers

Multi-way constraints are more general than one-way constraints – they are not limited
to invoking one method to enforce a particular constraint. For instance, consider the
example used above, x = y + z=2. A multi-way constraint solver could satisfy this con-
straint by either setting x to y + z=2, y to x � z=2, or alternatively, z to 2 � (x � y). This
provides the constraint solver (and the application using it) with much greater flexibility.
This behaviour is useful in constraint-based CAD since it allows relationships such as
coincident-points to be specified without having to specify which point should be treated
as the input to the constraint and which should be treated as the output.

Like one-way LP solvers, multi-way solvers have to determine the order in which to
enforce constraints. However, they also need to determine which method should be used

7
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to satisfy each constraint. This is equivalent to transforming the constraint graph from
an undirected graph to one that is directed. When directing the graph, the constraint
solver must ensure that no variable (i.e. node in the graph) has two incoming edges,
since this would result in more than one constraint attempting to determine the value of
that variable (i.e. the system would be over-constrained).

Multi-way solvers have the disadvantage that there may be more than one way to solve
any particular set of constraints – the system is under-constrained. The most common
way of coping with this problem is by using constraint hierarchies. Constraint hierar-
chies allow constraints to have different levels of importance. Under-constrained systems
are handled by over-constraining the system with non-required constraints at decreasing
levels of importance. The constraint solver can then satisfy a sufficient number of non-
required constraints to ensure that the system is well-constrained.

There are several closely related multi-way local propagation algorithms (see Figure 2.2).
These were investigated for purposes of identifying one that would be suitable for use in
this project.

Multi-way LP 
(e.g. Blue)

DeltaBlue
(propagates conflict)

QuickPlan
(multi-output,

propagates DoF)

SkyBlue
(multi-output,

propagates conflict)

Figure 2.2: Relationship between multi-way LP solvers.

Choice of Algorithm

Solver Multi-Way Hierarchies Cycles Multi-Output Complexity

Blue yes yes no no O(V + C)

DeltaBlue yes yes no no O(V + C)

SkyBlue yes yes yes yes O(M

C

)

QuickPlan yes yes yes yes O(C

2

)

Table 2.1: Comparison of Multi-Output Local Propagation Constraint Solvers.

From a comparison of Blue, DeltaBlue[28], SkyBlue[27] and QuickPlan[34] (see Table 2.1)
it was decided that QuickPlan should be used as the constraint solver for this project.

8
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2.2.4 Visual Language Theory

The creation and manipulation of constraints can be considered to be a form of program-
ming. Much like conventional programming, users of constraint-based CAD packages
attempt to achieve an overall goal by instructing the computer to execute sets of opera-
tions. In this case each operation is the act of enforcing a particular constraint.

The representation of an individual constraint can be thought of as a cognitive artifact:
“A cognitive artifact is an artificial device designed to maintain, display or operate upon
information in order to serve a representation function.”[23] Artifacts should support al-
teration of the information they represent, and provide the user with feedback on state
of the system as a result of the user’s actions. An artifact that does not provide a smooth
transition between these phases of interaction can disrupt the thought process of the user,
causing them to shift their focus of attention from their overall goal to the immediate ac-
tions being performed. This disruption can impair performance. One way of attempting
to address this issue is to make use of direct manipulation techniques.

Graphical user interfaces, including visual programming environments, often make use
of some form of metaphor[4]. The justification behind this is the belief that the use of
metaphor enhances usability by assisting the user in the formation of a mental model for
use when interacting with the environment in question. However, experimental work[7]
has not supported this theory – it is thought that users gain familiarity with an environ-
ment through direct manipulation rather than through use of an instructional metaphor.

The crucial attributes of direct manipulation[29] are:

� There should be continuous graphical representation of the objects of interest to the
user.

� Manipulation of objects should involve physical actions or labelled button presses.

� Operations performed by the user should be rapid, incremental and reversible.

� The effects of operations on an object of interest should be immediately visible.

� Novices should be able to learn the basic functionality quickly.

� Users should be able to gain access to additional functions as they gain familiarity
with the system.

These attributes should be considered when designing the visual representation of con-
straints.

2.2.5 Data Structure for In-Memory Storage of Geometric Entities

Hierarchical data structures are often used for storing and indexing spatial data. Such
data structures are based on the principle of recursive decomposition and make use of
spatial indexing, the process of sorting data with respect to the space it occupies.

There are several types of hierarchical data structure that can be used for representing
such 2D geometric entities, including plane-sweep methods, point-based methods, line-
based methods and area-based methods. However, an investigation of these methods led
to the conclusion that for the purpose of this project, none of these data structures would
provide a significant performance improvement over an unordered data structure for the
following reasons:

9
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� Plane-sweep based methods are most appropriately used if the data is static: inser-
tion of a single item into the data structure can force the re-execution of the algo-
rithm on the entire data set. CAD systems can have highly dynamic data.

� Point-based methods involve representing each geometric object by a point (e.g. the
centroid). Performing proximity queries can be problematic, unless additional in-
formation (such as the entity’s bounding box) is stored along with the co-ordinates
of the representative point, thus increasing the storage requirements of such a data
structure.

� The use of line-based methods, such as the PM quadtree and its variants, has the
disadvantage that some operations that can successfully be performed on rectan-
gles cannot be performed on their constituent line segments.

� Area-based methods such as the MX-CIF quadtree, the R-tree and the R+-tree may
reorder the entire data structure upon insertion of an entity. This is too time con-
suming for use in CAD systems where the location of an entity may change fre-
quently.

It was therefore decided that an unordered data structure, such as java.util.Vector,
should be used for storage of geometric entities. Whilst this has the disadvantage that
search for a particular entity has time complexity O(N), where N is the number of geo-
metric entities in the drawing, insertion and deletion have only O(1) time complexity.

2.2.6 Extensible Markup Language (XML)

XML, a metalanguage for describing constraints on the structure of data, easily satisfies
the requirements described in Section 2.1.1. In order to enable correct parsing of data,
XML documents must be well-formed. For data to be a well-formed XML document, the
well-formedness constraints outlined in the XML Specification[14] must be satisfied.

XML documents may also be valid. Unlike well-formedness, validity is not required of
XML documents. An XML document is valid if it has a document type definition (DTD)
and the document satisfies the constraints outlined in its DTD. A DTD defines the struc-
ture of an XML document by specifying the allowable content of an XML document, such
as the structure and nesting of elements, attributes, attribute values and comments. Val-
idating XML can be time consuming, however it was felt that the benefits of validation
(e.g. self-documentation) outweighed the slight loss of efficiency. An XML document can
also be schema valid if it is constrained by a schema rather than a DTD. However, XML
Schema is not part of the XML 1.0 Specification. It was therefore decided that DTDs
should be used rather than schemas.

Frameworks for XML Parsing

In choosing a framework for XML parsing, three alternatives were considered:

� SAX, the Simple API for XML[19], is an event-based API for parsing of XML data.
Applications implement handlers to process parsing events. SAX enables very fast,
sequential access to XML data.

� DOM, the Document Object Model[19] is another XML parsing framework. Unlike
SAX, DOM is a standard and covers content models other than XML. DOM is tree-
based. This means that it builds an in-memory tree representation of the XML doc-
ument being parsed. Applications can then traverse the tree and modify the data.
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� JDOM, the Java Document Object Model[21] is a lightweight, Java2-based API for
representing a document in Java. It can support any hierarchical data format (but
is compliant with current XML standards). JDOM enables reading, writing and
manipulation of XML documents using a tree structure. This tree structure can be
created using either the SAX or DOM parsing frameworks.

Choice of XML Parsing Framework

Framework Fast Data Access LowMem. Req. Manipulate Data Hierarchical Data

SAX yes yes no no

DOM no no yes yes

JDOM yes yes yes yes

Table 2.2: Comparison of XML parsing frameworks.

From a comparison of the advantages and disadvantages of SAX, DOM and JDOM (see
Table 2.2), it was decided that use of JDOM would be most appropriate. This is because
use of JDOM results in the flexibility provided by DOM, but with the efficiency of using
SAX.

XML Parser

SAX, DOM and JDOM are not XML parsers – they are simply frameworks for XML pars-
ing. To be able to parse XML documents, an XML parser is needed. There are several
XML parsers that are available in Java, including Apache Software Foundation’s Xerces,
IBM’s XMLJ4 and James Clark’s XP. Apache’s Xerces was chosen for use in this project.

2.3 Choice of Tools

The project was implemented in Java, using Sun’s Java 2 SDK, Standard Edition, ver-
sion 1.2.2 for Linux. Java was chosen over other object-oriented programming languages
because of its support for user interface design (Swing API), and 2D graphics (Java 2D
API). Code was written in GNU Emacs (Java mode), compiled using Sun’s Java compiler
(javac) and debugged using the Java debugger (jdb). To assist with the compilation
process, the GNU make utility was used. Prior to writing code for the project, test pro-
grams were written to gain familiarity with the Java 2D API and Swing.

I had originally intended to use Thor, the undergraduate teaching system, for develop-
ment. This proved to be impractical since there was too great a lag in interactive response
time. Instead, my personal computer (running Debian GNU/Linux) was used. CVS, a
version control system, was set up to store the code, and frequent backups of the en-
tire project were made and copied to Thor and other machines within the university. A
shell script (written for the GNU Bourne-Again Shell) was used to automate the backup
process.
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As described in the previous section, JDOM (the Java Document Object Model) and
Apache’s Xerces XML parser were used to read, write and manipulate XML data. Hav-
ing never used JDOM and Xerces before, I wrote test programs to learn more about them
prior to commencing the implementation stage of the project.

2.4 Development Process

Two commonly used software development models were considered – The Waterfall Model
and Iterative Development [31, 2].

Although the Waterfall Model is widely considered to be the best approach where appli-
cable due to its structured nature, it was felt that Iterative Development would be more
appropriate for this project. The Waterfall Model is rarely used for the development of
software with a heavy human–computer interaction emphasis. This is because require-
ments relating to the human–computer interface cannot necessarily be fully defined prior
to development or prototyping. Instead, prototyping is often used to construct a func-
tional user interface for purposes of obtaining user feedback [5]. An iterative approach
then can be taken, allowing the prototype to be refined on the basis of user comments
until it has achieved full system functionality. Another approach to prototyping advo-
cated by HCI research is that of creating many prototypes, thus enabling the usability
of several possible solutions to be evaluated before choosing to develop one particular
solution. This was felt to be too time consuming for a project of this scale and so, as a
compromise, possible solutions for aspects of the project relating to HCI were discussed
with users prior to the implementation of a prototype, thus ensuring that users’ opinions
were considered.

Once the initial specification of each module was finalised, the development process used
consisted of:

� Implementing each module with minimal functionality.

� Testing the module and evaluating those modules relating to human–computer in-
teraction by obtaining user feedback.

� Integrating the module with the rest of the system.

� Testing the system ensuring that the emphasis of the tests used was on the newly
integrated module (again obtaining user feedback if the module has a human–
computer interaction emphasis).

Additional functionality could be added to the module and the process repeated. A dia-
gram of the process is shown in Figure 2.3.
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Figure 2.3: Development process.

2.5 Summary

In this chapter, I have described the work undertaken prior to the implementation stage
of the project. Requirements were identified, thus refining and clarifying the overall aims
of the project. A summary of my research into existing constraint-based CAD systems,
constraint solving techniques, visual language theory and XML technologies was given.
An introduction to the technical details of local propagation constraint solvers was pro-
vided, and specific local propagation algorithms were analysed and compared leading
to the choice of a constraint solving algorithm for use in the project. The tools used in
the implementation stage of the project were listed, and an explanation of the software
development process employed was given.

System architecture and implementation details are described in the next chapter.
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3

Implementation

This chapter describes the implementation of a constraint-based drawing system satisfy-
ing the requirements outlined in Section 2.1.1. The architecture of the system is described,
and implementation detail of each component is given. The components described are
(in order of appearance in the chapter) are the constraint solver, the constraints imple-
mented, the drawing package (including integration of the drawing package and con-
straint solver, visual representation of constraints, the overall user interface, and external
data representation.

Figure 3.1: User interface of the system.

All components were successfully implemented and integrated to form a fully functional
system (the user interface of which is illustrated in Figure 3.1), which was then subjected
to usability testing (see Section 4.3).
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3.1 System Architecture

Constraint Solver
(QuickPlan)

Dimensioned
Constraints

Non-Dimensioned
Constraints

Geometric
Entities

Visual Representation
of Constraints

External Data
Representation

(XML)

Constraints

Drawing Package

User Interface: 
Creation and Manipulation of Geometric 
Entities and Constraint Representations

Figure 3.2: System architecture.

From the point of view of the architecture of the system (see Figure 3.2), there are four
major components:

� A drawing package.

� A constraint solver.

� Constraints.

� An external data representation.

These components can be further divided according to the view of the system presented
to the user – constraints can constrain particular dimensions or enforce a non-dimensioned
geometric relationship, and the drawing package can be considered to consist of geomet-
ric entities and the constraint representation. These aspects of the drawing package were
implemented separately and evaluated using empirical evaluation techniques (see Sec-
tion 4.2).
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3.2 Constraint Solver

As described in the previous chapter, QuickPlan[34] was chosen as the constraint solver
to be used in this project. QuickPlan is an incremental algorithm capable of satisfying any
hierarchy of multi-way, multi-output constraints that has at least one acyclic solution, in
less than O(C

2

), where C is the number of constraints.

3.2.1 QuickPlan Algorithm

There are two versions of the QuickPlan algorithm:

� A non-incremental version that examines the entire constraint graph whenever a
constraint is added or removed.

� An incremental version that reduces the number of constraints examined (com-
pared with the non-incremental version) whenever a constraint is added or re-
moved, and allows the set of constraints to be edited.

To gain familiarity with the algorithm, both the non-incremental and incremental ver-
sions were implemented. Only the incremental algorithm is used in the final code; the
operation and implementation of the non-incremental version is not covered here.

The incremental QuickPlan algorithm has two phases:

� A planning phase, based on propagation of degrees of freedom, in which a method
is chosen for each constraint.

� An execution phase, in which the methods are executed in topological order.

QuickPlan’s Planning Phase

Due the length restrictions on this report, a detailed explanation of the operation of
QuickPlan’s planning phase is provided in Appendix A.

A ConstraintGraph class was implemented to define the methods and data structures
required by QuickPlan’s planning phase.

QuickPlan’s Execution Phase

Before the execution stage of the algorithm, the constraints must be topologically sorted.
A topological sort of a directed acyclic graph is an ordering of the vertices of the graph
such that if the graph contains an edge from vertex u to vertex v, then u will be before v
in the ordering[8].

Methods were written to topologically sort the constraint graph using a depth first search,
and return a vector of the topologically sorted constraints (see Appendix F.1). The time
complexity of the sort is O(C + E), where C is the number of constraints in the graph,
and E is the number of edges.
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Adding and Removing Constraints

QuickPlan treats the new constraint to be added as an unenforced constraint. The al-
gorithm for adding constraints (see Appendix B) attempts to satisfy the constraint to be
added by identifying whether the constraint has a method that outputs only to the con-
straint’s free variables. If so, this method can be selected to enforce the constraint. If no
such method exists, the constraint is added to the queue of unenforced constraints, and
the algorithm calls the constraint solver to attempt to enforce the constraint. Note that
when attempting to enforce the constraint, only constraints upstream of the constraint to
be added will need to be examined (for justification see [34]).

To remove a constraint, QuickPlan removes the constraint from the constraint graph and
treats the constraint being removed as a retracted constraint. If the constraint was en-
forced at the time of removal, the algorithm sets the priority queue of unenforced con-
straints to contain those constraints that are downstream of the constraint to be removed
and of equal or lesser strength. The algorithm then attempts to find a locally-graph-better
solution by calling the constraint solver to attempt to enforce these constraints.

Methods implementing the algorithms for adding and removing constraints are defined
in the ConstraintGraph class.

3.2.2 Data Structures

The incremental version of QuickPlan requires the use of certain data structures to ensure
correct operation of the algorithm. Constraints and variables are required to contain cer-
tain fields (see Section 3.3), and several global variables and data structures are required,
including those in Table 3.1.

Name Description

cnsToEnforce constraint that the solver is trying to enforce

retractableCnsQueue a priority queue of constraints, ordered by increasing

strength, that may be retracted in order to enforce

another constraint

undoStack stack for storing information required to undo

changes to the constraint graph

unenforcedCnsQueue priority queue of retracted constraints, ordered by

decreasing strength

freeVariableSet free variable set

potentiallyUndeterminedVars set of variables that may become undetermined

Table 3.1: Global data structures and variables required by QuickPlan.

The priority queues were implemented using a heap data structure[8]. This involved
writing two classes – one implementing a priority queue, PriorityQueue, and one
implementing a heap, BinaryHeap. The constraint with the greatest (or least) strength
can be returned in O(1) and removed from the queue in O(logN) for a N -element heap.
Insertion of a new element also takes O(logN).

Unordered vectors, java.util.Vector, were used to implement the sets, and the undo
stack was implemented using the java.util.Stack class.
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3.3 Constraints

This section provides an overview of the constraints implemented. The geometric equa-
tions used in implementing the constraints can be found in Appendix C. Each constraint
affects one or more GeometricObjects (the GeometricObject interface is discussed
in Section 3.4.1), but all constraints are internally defined in terms of DoublePoint2Ds.
(This is possible because all other geometric entities are defined by DoublePoint2Ds.)
In other words, the only geometric entities treated as variables to be explicitly determined
by the QuickPlan algorithm are DoublePoint2Ds.

QuickPlan requires all variables to be determined by the algorithm to contain certain
fields (see Table 3.2). Therefore, the DoublePoint2D class (see Section 3.4.1) incorpo-
rates these fields, as well as methods for setting and accessing their values.

Name Description

determinedBy the constraint that determines the value of this variable

constraints the set of constraints that make use of this variable

numConstraints the number of constraints that reference the variable

walkbound minimum strength upstream constraint that would have

to be retracted to allow the variable to be determined by a

different constraint

mark used to mark the variable as visited

Table 3.2: Fields that the QuickPlan algorithm requires each variable to contain.

All the constraints implemented are subclasses of Constraint, an abstract class con-
taining the fields required by the QuickPlan algorithm (see Table 3.3), as well as methods
for setting and accessing each of the fields.

Name Description

variables the set of variables referenced by this constraint

methods the set of methods used to enforce this constraint

selectedMethod the method that currently currently satisfies the constraint

strength the constraint’s strength in the constraint hierarchy

mark used to mark a constraint as visited

Table 3.3: Fields that the QuickPlan algorithm requires to be associated with each constraint.

Each Constraint contains one or more member classes that extend an abstract Con-
straintMethod class. These member classes represent the methods that can be used to
enforce that Constraint. A constraint with multiple ConstraintMethods is a multi-
way constraint. Where possible, Constraints are multi-way constraints to increase the
number of possible solution graphs that can be constructed, thus increasing flexibility.

Eleven types of constraint were implemented (see Table 3.4), some of which constrain
particular dimensions, and some of which enforce non-dimensioned geometric relation-
ships.
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The user can create additional constraints by combining constraints. For instance, the
radius of a DoubleCircle2D can be constrained by using a PointOnCircleCon-
straint to constrain a DoublePoint2D to lie on the circumference of the Double-
Circle2D, and then constraining the distance between the DoublePoint2D and the
centre of the DoubleCircle2D.

Class Name Description of Constraint

PositionConstraint Constrains a DoublePoint2D to be at a given

location.

DistanceConstraint Constrains the distance between two

DoublePoint2Ds.

PointLineDistanceConstraint Constrains the distance between a

DoublePoint2D and a DoubleLine2D.

LineAngleConstraint Constrains the angle of inclination of a

DoubleLine2D.

CoincidentPointsConstraint Constrains two DoublePoint2Ds to be

coincident.

MidPointLineConstraint Constrains a DoublePoint2D to lie at the

mid-point of a DoubleLine2D.

PointOnLineConstraint Constrains a DoublePoint2D to lie on a

DoubleLine2D.

PointOnLineExtendedConstraint Constrains a DoublePoint2D to lie on the

the extension of a DoubleLine2D.

PointOnCircleConstraint Constrains a DoublePoint2D to lie on the

circumference of a DoubleCircle2D.

HorizontalLineConstraint Constrains a DoubleLine2D to be horizontal.

VerticalLineConstraint Constrains a DoubleLine2D to be vertical.

Table 3.4: The constraints implemented.

3.4 Drawing Package

The drawing package is a subsidiary part of the project, however, it was necessary to
provide sufficient complexity to demonstrate the power of the QuickPlan algorithm and
the operation of my constraint representation. This section describes the geometric prim-
itives supported by the drawing package, as well as the functionality provided for creat-
ing, selecting and manipulating geometric entities. Integration of the drawing package
and constraint solver is also described.

The majority of the functionality of the drawing package is contained within the Draw-
ing class which is an extension of javax.swing.JPanel, a general purpose lightweight
component provided by Java’s Swing as a replacement for the Abstract Windowing Toolkit’s
java.awt.Panel and java.awt.Canvas. The Drawing class defines over fifty meth-
ods that provide functionality for creation, selection and manipulation of geometric en-
tities and constraints, as well as methods for displaying geometry and visual representa-
tions of constraints.
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Methods inherited from the javax.swing.MouseInputListener interface are used
to detect mouse events. These methods are used to invoke other methods to perform
tasks such as setting the tool currently being used, and selection, creation and manipula-
tion of geometric entities and constraints.

3.4.1 Geometric Entities

Geometric entities can have one of two functions:

� Primary entities are components of the final drawing.

� Construction entities are not part of the final drawing, but are used during the pro-
cess of constraining the primary entities.

The geometric entities provided are points, line segments and circles. Line segments and
circles can be either primary or construction entities. Construction line segments and
circles are visually distinguished from their primary counterparts by being displayed
using dashed lines (see Figure 3.3). Points are only meaningful as part of a drawing when
considered in relation to another object, and are therefore always treated as construction
entities. The user can toggle visibility of construction entities.

Figure 3.3: Primary and construction circles.

To express the distinction between general methods of any geometric entity and meth-
ods specific to a particular type of geometric entity, as advocated by Stroustrup[32], a
GeometricObject interface was written:

public interface GeometricObject {
public void setColor(Color c);
public Color getColor();
public DoublePoint2D[] getPoints();
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public boolean isConstructionObject();
public Rectangle2D.Double[] getSelectionHandles();
public boolean isMouseClickedOn(Point2D clickPt);
public void moveDefiningPt(DoublePoint2D pt, double x, double y);
public void translate(double x, double y);
...

}

This interface is implemented by the classes defining the three types of geometric objects
provided – DoublePoint2D, DoubleLine2D, DoubleCircle2D.

Points

In addition to implementing the GeometricObject interface, points (DoublePoint2D)
are a subclass of java.awt.geom.Point2D.Double. The coordinates of the point are
stored using double fields (IEEE 754 64-bit floating-point): CAD drawings often require
double precision to be used to represent numbers to sufficient accuracy.

Line Segments

Line segments (DoubleLine2D) implement the GeometricObject and java.awt.Shape
interfaces. Each line segment is defined by two DoublePoint2Ds. Since constraints op-
erate upon DoublePoint2Ds (see Section 3.3), the location and orientation of each line
segment is defined by any constraints currently determining the positions of its end-
points. Each DoubleLine2D is either a primary or construction line segment.

Circles

As well as implementing the GeometricObject interface, circles (DoubleCircle2D)
extend java.awt.geom.RectangularShape, an abstract class used as a base class for
java.awt.Shape implementations that have a rectangular bounding box. Circles are
defined by two DoublePoint2Ds – the centre of the circle, and a point on the circumfer-
ence of the circle that defines the radius of the circle.

The existence of the radius point is not revealed to the user, since its sole purpose is in
enabling a larger class of constraints to be applied to circles than would otherwise be
possible. Like line segments, each DoubleCircle2D can be a primary or construction
circle.

3.4.2 Line Colour

A tool is provided for changing the line colour for new geometric entities (see Figure 3.15.
When the user selects this tool, a colour chooser is displayed (see Figure 3.4), from which
a new colour may be chosen.

3.4.3 Input Model

Input options are indicated to the user by two toolbars (see Figure 3.5) – one for geo-
metric entities, and one for constraints. Tools are provided for the creation and manip-
ulation of primary entities (line segments and circles), construction entities (points, line
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Figure 3.4: Colour chooser.

segments and circles) and constraints (for discussion of the creation and manipulation
of constraints, see Sections 3.5.7 and 3.5.8). The javax.swing.ButtonGroup class is
used to ensure that selection of these tools is mutually exclusive.

Figure 3.5: Geometric entities toolbar (left) and constraint toolbar (right).

Input of a particular geometric entity is carried out by first selecting the appropriate tool
from the geometric entities toolbar. When the user starts creating an entity, the current
selection is set to the entity being created. Input is performed using either a click mecha-
nism for points, and a press-drag-release mechanism for line segments (see Figure 3.6) and
circles (see Figure 3.7).

Figure 3.6: Creation of a line segment: Press, drag, release.
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Figure 3.7: Creation of a circle: Press, drag, release.

The use of a press-drag-release mechanism provides consistency between the creation
of a line segment or circle and subsequent translation or resizing of the segment or cir-
cle, which is also performed using a press-drag-release mechanism. Construction line
segments and circles are input in exactly the same manner as their primary counterparts.

If the user creates a line segment of zero length, or a circle of zero radius, the line segment
or circle is not added to the drawing. This prevents the user from accidentally creating
lines or circles which are too small to be manipulated.

3.4.4 Selection Model

The entities that can be selected are points, line segments, end-points of line segments,
and circles and their centre points. Selected entities are visually distinguished from enti-
ties not part of the current selection using selection handles (shown in green in Figures 3.6
and 3.7).

Standard selection behaviour is implemented. Clicking the mouse button while the cur-
sor is near to an entity sets the current selection to that entity. Selection of multiple entities
can be performed by creating a new selection using a selection rectangle. To add or remove
an entity from the current selection, the shift button must be held down and the mouse
button clicked while the cursor is near to the entity. The current selection is cleared if the
primary mouse button is clicked while the mouse cursor is not on, or near, any entity.

The selection process is initiated by the mousePressedmethod whenever the user clicks
the primary mouse button or starts dragging the mouse whilst using the selection tool.

A GeometricObject variable is used to store a reference to the entity most recently
clicked on. An unsorted vector of references to currently selected entities is also main-
tained. Each reference either points to an entity in the geometric entities vector, or to
a defining point of one of these entities. This vector can be accessed by other methods
within the drawing canvas.

Points are considered to be “above” other geometric entities, because the area occupied
by the on-screen representation of a point is less than the area occupied by other geomet-
ric entities.

Threaded Architecture for Selection of Multiple Geometric Entities

A novel approach was used to improve responsiveness to selection of multiple geometric
entities. Once the user releases the primary mouse button, indicating that they have fin-
ished positioning the selection rectangle, an instance of a subclass of java.lang.Thread
is created for each geometric entity in the drawing to determine whether the entity falls
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within the selection rectangle. If the entity is contained within the selection rectangle, a
reference to the entity is added to the vector recording the current selection. Synchroni-
sation problems do not occur, because java.util.Vector’s methods for adding ele-
ments to the vector are marked with the synchronized keyword, so that they can only
be invoked by one thread at a time. This use of threads resulted in a noticeable per-
formance improvement over a non-threaded method of determining which entities lie
within the selection rectangle.

3.4.5 Manipulation of Geometric Entities

Manipulation of geometric entities is performed using the select tool. The selection pro-
cess is invoked prior to manipulation of entities. This has the effect of ensuring that the
entity to be manipulated is part of the current selection.

A point or line segment is translated by dragging it to the desired location. Circles are
translated by dragging their centre point to the desired location. If several entities are
already selected, and the user starts dragging the mouse while the cursor is over an entity
that is part of the current selection, the entire selection will be translated.

Resizing of a line segment is performed by dragging one of its end points to a new loca-
tion. A circle can be resized by dragging its circumference.

3.4.6 Integration of Constraint Solver and Drawing Package

Prior to integrating the constraint solver with the drawing package, two constraints were
created – a position constraint and a distance constraint (see Section 3.3). These con-
straints were used for testing during the integration process.

Stay Constraints

When the constraint solver and drawing package were integrated, it became apparent
that the system was not conforming to the principle of least astonishment[3]. In other words,
from the point of view of the user, the system was not behaving in a predictable fashion.

For example, consider a multi-way constraint for constraining the distance between two
points, P1 and P2. Such a constraint will have two satisfaction methods, enabling the
location of point P1 to be based on the location of P2 or vice versa. When such a con-
straint is added to the system, the solver will direct the constraint graph so that one of
these methods is being used to enforce the constraint. Since the constraint graph is redi-
rected only when constraints are added or removed from the system, provided no other
constraints are determining the location of either P1 or P2, when one of these points is
dragged the user will not know in advance whether the point being dragged is being
constrained to lie within a certain distance of the other point, or vice versa. The effect of
this is that sometimes the point being dragged will only be allowed to move in a circle
with radius equal to the distance that the constraint specifies, and other times, the point
will be allowed to be dragged to wherever the user desires, and the other point will be
constrained to follow it.

To eliminate this ambiguity, an explicit stay constraint of a weak strength is added to the
defining points of any geometric entity that is being manipulated at the start of manip-
ulation, and removed when manipulation finishes. It redirects the constraint graph so
that any constraints that attached to points defining the entity being manipulated will (if
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possible) treat the points as the input to the constraint. This ensures that behaviour of
constraint entities during manipulation is consistent.

3.5 Visual Constraint Representation

This section describes the implementation of visual representations of each of the con-
straints in Section 3.3, as well as the functionality provided for constraint creation and
manipulation.

A number of possible design solutions were initially explored. The solution felt to be
the clearest was inspired by research on the use of colour for display of layered infor-
mation in air traffic control (ATC) displays[26]. The underlying concept is to represent
constraints as coloured infilled areas bounding the geometry they constrain, with differ-
ent fill patterns to distinguish between different constraint types.

A primary concern in designing a visual constraint representation is visual emphasis –
geometric entities should have a greater visual emphasis than the constraint representa-
tion. One way of thinking about this is to consider geometric entities to be in the “fore-
ground” and constraints in the “background”. This distinction is enforced by the choice
of colours, as well as techniques such as blurring. To ensure that no constraint is obscured
by another constraint, constraint representations are translucent.

Each subclass of Constraint contains a method (drawConstraint) for drawing its
visual representation. The java.awt.Graphics2D context of a Drawing can be passed
to this method, and the visual representation will be drawn on it.

3.5.1 Layering and Transparency

The appearance of transparency is achieved by blending “transparent” pixels with pixels
that the transparent pixels are to be painted over. Blending is performed by using an
equation on the red, green and blue components of the colours separately. The exact
form of the equation depends on the compositioning rule used.

Java supports a subset of the Porter Duff compositioning rules. These rules describe
different ways of blending a source colour, CS, with a destination colour, CD, to produce
a new destination colour, CD0. Each rule is of the form:

CD

0

= CS � FS + CD � FD (3.1)

where FD and FS are the fractions of CS and CD to be used in the blending operation
respectively. Each Porter Duff rule uses a different pair of values for FS and FD.

To achieve a transparent layered effect when displaying constraint representations, the
Source Over rule is used in rendering the each constraint representation onto a Drawing.

CD

0

= CS � � + CD � (1� �) (3.2)
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where � is the alpha value (between 0 and 1) of the source colour, CS. This rule draws
the source colour over the destination colour by combining the source and destination
colours based on the transparency of the source colour.

When drawing constraint representations, an alpha value of 0:45 is used. The alpha value
is reset to 1:0 prior to drawing geometric entities.

3.5.2 Blurring

To further distinguish between geometry and constraints, each constraint representation
is blurred prior to displaying it on a Drawing (see Figure 3.8). This reinforces the notion
of constraints as part of the background, and geometry as the main focus of attention.

Figure 3.8: Blurred constraint representation.

Blurring is performed using a convolution filter. Filtering is a linear operation, imple-
mented by convolving an image with one or more filter kernels to produce a new image.
In 2D, the discrete convolution of an image array, f(x; y), with a 2D filter kernel, g(x; y),
can be represented by the following equation:

f

0

(x; y) =

+1

X

i=�1

+1

X

j=�1

g(i; j)� f(x� i; y � j) (3.3)

A 3� 3 Gaussian blurring filter (see Table 3.5) was used to blur the visual representation
of each constraint. Gaussian blurring is generally smoother than basic blurring, in which
the values in the filter kernel are identical. To ensure that the brightness of the constraint
representation is unaltered by the blurring process, the values in the filter kernel sum to
1.

1

16

1

8

1

16

1

8

1

4

1

8

1

16

1

8

1

16

Table 3.5: 3� 3 Gaussian blurring filter.

Java’sjava.awt.image.ConvolveOpand java.awt.image.Kernel classes provide
support for convolving java.awt.image.BufferedImages with filter kernels.
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3.5.3 Colours

The colours used for the constraint representations were chosen to have a medium lumi-
nance and low saturation so that their visual emphasis is not significantly different from
that of the main background colour (see Section 3.16). This use of colour also ensures
that the constraint representations do not visually compete with the display of geometric
entities. Four colours were chosen (see Figure 3.9).

Figure 3.9: Colours used for representing constraints.

The colour used for each constraint type depends on the nature of that constraint type.
For instance, all constraints representing a “point-on” relationship are blue.

3.5.4 Shapes

The concept underlying the shapes used is that of spatial boundedness – the geometry being
constrained is contained within the area of its constraint representation.

Four types of shape are used – circles (see Figures 3.10, 3.12 and 3.14), rectangles (see Fig-
ure 3.13), and two types of polygon (see Figure 3.11). The java.awt.geom.Ellipse2D.Double
and java.awt.geom.Rectangle2D.Double classes were used to draw circles and
rectangles respectively. The polygons were created using the java.awt.geom.Area
and java.awt.geom.GeneralPath classes.

3.5.5 Fill Patterns

Representations of the different types of constraint (see Section 3.3) are visually distin-
guished from one another by the use of fill patterns. For dimensioned constraints, the fill
patterns also indicate the current value of the dimension being constrained.

Location of a Point

The visual representation of a PositionConstraint displays a pale grey circle sur-
rounding the location of the DoublePoint2D being constrained (see Figure 3.10).

Distance Between Two Points or a Point and a Line Segment

The visual representation of DistanceConstraints and PointLineDistanceCon-
straints has a fill of the same shape as the constraint representation itself, that indicates
the length of the distance being constrained (see Figure 3.11).
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Figure 3.10: PositionConstraint.

Figure 3.11: From left to right: DistanceConstraint and PointLineDistanceCon-
straint.

Coincident Points

The representation of eachCoincidentPointsConstraint constraint contains a white
cross (see Figure 3.12), distinguishing it from constraints that constrain a DoublePoint2D
to lie on a DoubleLine2D or DoubleCircle2D. The cross shape is the union of two
rectangular java.awt.geom.Areas.

Figure 3.12: CoincidentPointsConstraint.

Angle of Inclination of a Line Segment

HorizontalLineConstraint,VerticalLineConstraintand LineAngleConstraint
all make use of the java.awt.TexturePaint class to create striped fills inclined at the
same angle as the line segment being constrained (see Figure 3.13).
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Figure 3.13: From left to right: HorizontalLineConstraint and VerticalLineCon-
straint.

Point on Line Segment or Circle

The PointOnLineConstraint,MidPointLineConstraint,PointOnLineExtend-
edConstraint and PointOnCircleConstraint are all represented by a small pale
grey square at the location of the DoublePoint2D being constrained, and a white line
or arc indicating the direction(s) in which the the point is able to move (see Figure 3.14).

Figure 3.14: From left to right: MidPointLineConstraint,PointOnLineConstraint,
PointOnLineExtendedConstraint and PointOnCircleConstraint.

3.5.6 Creation and Manipulation of Constraints

Creation and manipulation of constraints are performed using direct manipulation. This
enables similar gestures to be used for creation and manipulation of constraints and ge-
ometric entities, ensuring consistency. In addition, the use of direct manipulation of con-
straint representations provides users with continuous feedback on their actions, result-
ing in a smooth transition between the alteration and evaluation phases of interaction, as
advocated by Norman[23].

3.5.7 Constraint Creation

Constraint creation is carried out by first selecting the appropriate tool from the con-
straint toolbar (see Figure 3.5), and then selecting the entities to be constrained by click-
ing the mouse near to the each of these entities. The constraint solver then attempts to
add the desired constraint. If this is not possible, a message dialog is displayed indicating
this.

To adhere to the principle of least astonishment, geometric entities are moved as little
as possible when the constraint is added – for instance, if a DistanceConstraint is
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added to constrain the distance between two DoublePoint2Ds, the constraint added
will constrain the distance to be the current distance between them. The user can modify
this distance by directly manipulating the constraint representation at a later stage.

3.5.8 Constraint Manipulation

The visual representation of constraints that have a particular value associated with
them (PositionConstraint, DistanceConstraint and LineAngleConstraint)
can be directly manipulated to change this value. Manipulation is performed with the
constraint selection tool using a press-drag-release mechanism.

If the cursor is moved over the representation of a constraint that can be manipulated, the
cursor changes the default cursor to the move cursor. A subclass of java.lang.Thread
is used to determining whether the cursor is over the representation of a constraint that
can be manipulated.

3.6 User Interface

This section describes the overall user interface of the program. Decisions regarding
the design of the user interface were justified using empirical evaluation techniques (see
Section 4.2). Figure 3.15 is a screenshot of the user interface. Important features of the
user interface are annotated.

Status area displays
information for the user,

read from a properties file.

Titlebar displays 
leafname of current 

drawing file.

Line colour selection tool.Geometric entities toolbar. Constraints toolbar.

Extension of 
javax.swing.JInternalPanel
that supports autoscrolling
and auto-enlarging of the 

drawing canvas.

Extension of
javax.swing.JDesktopPane

that provides support
for iconising and cascading

JInternalFrames.

Figure 3.15: Screenshot of the user interface.
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3.6.1 Undo/Redo

Each drawing makes use of Swing’s UndoManager and UndoableEditSupport classes
to provide support for up to a hundred undoable and redoable operations (such as cre-
ation of geometric entities and constraints).

3.6.2 ViewModes

Traditionally, display of CAD drawings involves coloured lines on a black background
or black lines on a white background. This use of colour clearly highlights the geometry
displayed, but can be visually tiring to work with. It was therefore decided that the user
should be provided with three viewing modes – black-on-white mode, colour-on-black
mode and constraint mode (see Figure 3.16). Constraints are not displayed in black-on-
white and colour-on-black modes. If the user selects a constraint creation tool while in
black-on-white or colour-on-black mode, the view mode is changed to constraint mode.

Figure 3.16: From left to right: constraint mode, colour-on-black mode, black-on-white mode.

The background colour for the constraint mode was chosen to be a medium luminance,
low saturation grey[26]. This colour is visually restful yet enables geometric entities to
be clearly discerned.

Figure 3.17: Background colour.

3.6.3 Visibility of Construction Entities

Visibility of construction entities can be toggled using a check box in the view menu.
When visibility of construction entities is disabled, constraints that affect only construc-
tion entities are not displayed either. If the user selects a construction entity creation tool
whilst visibility of construction entities is disabled, visibility is automatically re-enabled.
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3.6.4 Visibility of Constraints

When the drawing is in the constraint view mode, visibility of particular constraint types
can be disabled by ticking the appropriate check box in the view menu. If the user selects
a particular constraint creation tool whilst visibility of that constraint type is disabled,
visibility of that constraint type is automatically re-enabled. When the drawing is in
either of the black-on-white and colour-on-black view modes, the constraint visibility
check boxes are disabled, since no constraints are visible in these modes.

3.7 External Data Representation

In order to externally represent a drawing in such a way that it can be successfully recre-
ated, the following information is required:

� The width and height of the drawing.

� A description of each GeometricObject in the drawing.

� A description of each Constraint in the drawing.

� Knowledge of which GeometricObject are constrained by which Constraints.

3.7.1 Document Type Definition

Document Type Definitions define the structure of an XML document by specifying al-
lowable content, such as the structure and nesting of elements, attributes, attribute values
and comments. A DTD was written to define the structure of the XML data to be used by
the program. The elements defined include:

<!ELEMENT Drawing ( GeometricObjects, Constraints )>

<!ELEMENT GeometricObjects ( DoublePoint2D |
DoubleLine2D | DoubleCircle2D )*>

<!ELEMENT DoublePoint2D EMPTY>
<!ELEMENT DoubleLine2D (DoublePoint2D, DoublePoint2D)>
<!ELEMENT DoubleCircle2D (DoublePoint2D, DoublePoint2D)>

<!ELEMENT Constraints ( PositionConstraint | DistanceConstraint |
CoincidentPointsConstraint |
HorizontalLineConstraint |
VerticalLineConstraint | LineAngleConstraint |
PointOnLineConstraint |
PointOnLineExtendedConstraint |
PointOnCircleConstraint |
MidPointLineConstraint |
PointLineDistanceConstraint |
PerpendicularLinesConstraint )*>
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<!ELEMENT PositionConstraint EMPTY>
<!ELEMENT DistanceConstraint EMPTY>
<!ELEMENT CoincidentPointsConstraint EMPTY>
...

(Attribute definitions have been omitted for clarity.)

The element definitions form a hierarchy. For example, the element representing the set of
geometric entities must contain zero or more elements representing DoublePoint2Ds,
DoubleLine2Ds or DoubleCircle2Ds. The order of elements in the DTD is significant.
For example, each document must start with a Drawing element – a document that starts
with a Constraints element is invalid.

The DTD also defines attributes for certain elements. Attribute definitions are of the form:

<!ATTLIST [Enclosing Element]
[Attribute Name] [type] [Modifier]
...

>

Each attribute has a type and a modifier associated with it. Attribute modifiers describe
the behaviour of the attribute. For example, the attribute definitions for DoublePoint2D
elements and PositionConstraint elements are:

<!ATTLIST DoublePoint2D
x CDATA #REQUIRED
y CDATA #REQUIRED
color CDATA #REQUIRED
id ID #REQUIRED>

and

<!ATTLIST PositionConstraint
x CDATA #REQUIRED
y CDATA #REQUIRED
strength ( 3 | 2 | 1 | 0 ) #REQUIRED
point IDREF #REQUIRED>

To represent which geometric entities are constrained by which constraints, each Dou-
blePoint2D, DoubleLine2D and DoubleCircle2D element is given a unique iden-
tifier. This identifier can then be used as a label for that element within the document.
Each element representing a constraint has one or more attributes representing the Geo-
metricObjects constrained. These attributes are of type IDREF – they refer to the IDs
of the elements representing the constrained GeometricObject. This use of unique
identifiers and identifier references enables the structure of the ConstraintGraph as-
sociated with the Drawing represented by this document to be recreated.

3.7.2 JDOM

JDOM operates by turning an XML document into a JDOM org.jdom.Document ob-
ject. JDOM org.jdom.Document objects are created using a build tool. Build tools
use an XML parser and either the SAX or DOM API to create a JDOM document. The
build tools provided are org.jdom.SAXBuilder and org.jdom.DOMBuilder. Once
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a org.jdom.Document object has been created, it is not tied to the build tool and parser
that built it. In general, org.jdom.SAXBuilder is used to createorg.jdom.Document
objects. This is because current DOM parser implementation use SAX to create the DOM
tree. The use of org.jdom.DOMBuilder to create a org.jdom.Document object will
always be slower than using org.jdom.SAXBuilder. In addition, due to the require-
ment that the DOM tree must remain in memory for the entire duration of its use (in this
case, the conversion process to a JDOM org.jdom.Documentobject, using org.jdom.DOMBuilder
will also consume more memory. It was therefore decided that org.jdom.SAXBuilder
would be used as the build tool, and org.jdom.XMLOutputter as the output tool (see
Figure 3.18).

SAXBuilder XMLOutputterXML Document

Figure 3.18: Flow of XML data.

3.7.3 Handling XML Documents

A XMLHandler class was written to define methods for converting a Drawing to an
XML document and vice versa.

Reading XML Documents

To convert an XML document to a Drawing, the document is parsed and built into an
org.jdom.Document. The root element of this org.jdom.Document is then passed to
a method (processFile) which traverses the org.jdom.Document. If an element rep-
resenting a DoublePoint2D, DoubleLine2D or DoubleCircle2D is encountered, the
attribute values associated with that element are used to recreate the DoublePoint2D,
DoubleLine2D or DoubleCircle2D. So that constraints can be correctly recreated,
each GeometricObject is stored in a java.util.Hashtable, with its unique identi-
fier attribute value as a key. If an element representing a Constraint is encountered, the
value of its identifier reference attribute values can be used to retrieve the Geometri-
cObjects constrained by this constraint from the java.util.Hashtable. The Con-
straint can then be recreated correctly.

Writing XML Documents

Converting a Drawing to an XML document involves building a org.jdom.Document
and then adding elements to it corresponding to the GeometricObjects and Con-
straints in the Drawing. When an element corresponding to each GeometricOb-
ject is added to the org.jdom.Document, the unique identifier for that element is
recorded in the saveID field of the GeometricObject. Since elements representing
Constraints are added to the org.jdom.Document after all GeometricObjects, the
identifier reference attributes of each element representing a Constraint can be set to
the unique identifiers of the elements representing the GeometricObjects constrained
by that Constraint by simply retrieving the values stored in the saveID fields of the
GeometricObjects. Once elements corresponding to each of the GeometricObjects
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and Constraints in the Drawing have been added to the org.jdom.Drawing, an in-
stance of the org.jdom.XMLOutputter class is used to output the org.jdom.Drawing
as an XML file.

Saving Files

When the user selects either the “Open” or “Save As” menu item from from the File
menu, a file chooser with a default file filter for XML files is displayed (see Figure 3.19).

Figure 3.19: File chooser.

If the user tries to close an unsaved drawing, or quit the program while unsaved draw-
ings are open, a dialog box is displayed to confirm the operation so that data is not acci-
dentally lost.

3.8 Implementation Achieved

All the components (see Section 3.2) were successfully implemented and integrated with
each other. The system is fully functional as a simple constraint-based drawing package,
and was therefore subjected to controlled usability testing (see Section 4.3).

3.9 Summary

In this chapter, I have described the work undertaken in implementing a constraint-based
drawing package satisfying the requirements of Section 2.1.1, as well as the requirements
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outlined in my project proposal. The system architecture was outlined, and each compo-
nent of the system (constraint solver, constraints, drawing package, visual representation
of constraints, user interface, and external data representation) was described.

Testing and evaluation of the system are described in the next chapter.
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Evaluation

This chapter provides an overview of the types of tasks the system is capable of perform-
ing, as well the techniques used to test the system. Throughout the implementation stage
of the project, usability of system components with a human–computer interaction em-
phasis was tested using empirical evaluation. An overview of the evaluation techniques
employed is given in this chapter. In addition to this, a description is provided of the
controlled experiment designed to evaluate the usability of the completed system.

4.1 Testing

Throughout the implementation stage, testing was performed as often as possible. Each
component of the system was tested both individually, and when the component was
integrated with the rest of the system.

4.1.1 Drawing Package and Visual Representation of Constraints

The drawing package and visual representation of constraints were developed by itera-
tively refining a prototype to enable user feedback to inform the implementation process.
User feedback was obtained throughout the development process using empirical evalu-
ation (see Section 4.2).

4.1.2 Constraint Solver and Constraints

To facilitate testing my implementation of the QuickPlan algorithm included the ability
to generate output corresponding to each stage of the algorithm. This allowed me to test
that the behaviour exhibited by my implementation was consistent with the description
of the QuickPlan algorithm in[34].

The constraint solver has no problem handling well-constrained and under-constrained
systems of constraints. Examples of the type of geometric figures that can be created
are shown in Figures 4.1, 4.2 and 4.3. These examples all involve several constraints
of various types – Figure 4.1 involves nine constraints, Figure 4.2 involves twenty-seven,
and Figure 4.3 involves fifteen.

Constraints were tested in conjunction with the constraint solver. A test harness was writ-
ten to enable constraints to be added and removed from geometric entities prior to the
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Figure 4.1: The body is constrained to be vertical, and the arms are of fixed length and can be
moved as if they were waving.

Figure 4.2: Bicycle, viewed in both constraint mode (showing representations of many con-
straints) and colour-on-black mode (with visibility construction entities turned off).

implementation of the visual representation of constraints. This enabled the interaction
between constraints and geometry to be observed. In addition to testing the behaviour
of each constraint in isolation, each constraint was tested in combination with other con-
straints, to determine whether the interaction between constraints was as expected.

4.1.3 External Data Representation

To test the ability of the system to save and load drawings, drawings were created, saved,
opened, and saved again. As well as checking that the appearance of the drawing was
the same when reloaded, the two saved files were compared to ensure that identical out-
put had been produced, and thus that both loading and saving of files were functioning
consistently. All geometric entities and constraint types were included in the drawings
used in this test.
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Figure 4.3: The trees remain vertical and attached to the slope even if the angle of inclination of
the slope is changed.

4.2 Empirical Evaluation

To ensure that design decisions concerning the user interface were not made on the basis
of untested hypotheses, formative evaluation[22] was used. Formative evaluation is the
approach of building prototypes and testing them on users to obtain feedback that can
be used to inform the next stage of the iterative design process. The types of question that
formative evaluation was used to answer are:

� Which possible design solution should be adopted?

� What are the problems (if any) with the chosen solution?

There are various methods of formative evaluation, some of which are based over a
longer timescale than others. Due to the timescale of this project, it was felt that the
most appropriate method for formative evaluation would be that of prototyping and
informal user testing during the development of the system, followed by controlled eval-
uation of the final product. Informal user testing was conducted according to a six-stage
framework[22]: see Appendix D.

4.3 Evaluation of Final System

To evaluate the usability of the completed system, a controlled experiment was con-
ducted. The purpose of performing a controlled experiment was to obtain measures of
usability levels with a greater level of accuracy than could be achieved through informal
testing.

The hypothesis explored by the controlled experiment was:
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“The system results in a significant improvement in usability over existing constraint-
based CAD systems.”

To test this hypothesis, a two-sample experiment was devised. A two-sample experiment
involves testing the two systems in question, collecting performance data, and then com-
paring the sample means of the data.

4.3.1 Identification of Variables and Choice of Tasks

Prior to devising tasks to be performed, the usability factor being evaluated (the depen-
dent variable) was identified as the speed of performance of each task. The systems being
tested were considered to be the independent variables.

The tasks devised were chosen to be simple enough to be performed in a very short
timescale, but complex enough to be a realistic representation of tasks that potential
users of such a system might perform. Each user was asked to create five simple ge-
ometric figures using the geometric primitives and constraints provided by the system
(see Figure 4.4).

Figure 4.4: Geometric figures to be created. From left to right: concentric circles, triangle in circle,
balloon, tree on slope, house.

To ensure that nuisance variables such as the description of the task given to the user, or the
order in which the user was asked to create the geometric figures did not affect results,
each user was asked to perform the set of tasks in exactly the same order, and a script
was read to each user describing the task to be performed (see Appendix E).

4.3.2 Recruiting Subjects

My system was tested on a sample population of fifteen Cambridge University under-
graduates. The students were chosen from a mixture of subjects. The results of these
tests were compared with the time taken by an expert user to perform the tasks on an
commercial constraint-based CAD system. It was hoped that my my system would be
faster to use, even by novices, than an commercial constraint-based CAD system. Ideally,
I would have liked to let the students attempt to use the commercial constraint based
CAD system as well, however this proved to be infeasible due to financial and time con-
straints.

4.3.3 Collecting Data

Each of the subjects testing my system was read a script describing the system and given
a demonstration of the creation of each type of geometric entity and constraint. The
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time taken by each subject to perform each of the tasks described in Section 4.3.1 was
recorded. Prior to performing each task, each subject was read a description of the task
to be performed and shown a picture of the geometric figure to be created.

This procedure was repeated so that two sets of results were obtained for each task.

4.3.4 Analysis of Data

The sample means of both sets of results obtained for my system were taken (see Ta-
ble 4.1).

Task Mean of First Set (seconds) Mean of Second Set (seconds)

Concentric circles 12.8 9.0

Triangle in circle 69.8 31.0

Balloon 21.5 16.8

Tree on slope 34.8 22.5

House 52.3 28.5

Table 4.1: Mean times taken by an novice users using the system implemented.

These means were compared to the time taken by an expert user to perform the same
tasks on an commercial constraint-based CAD system (see Table 4.2).

Task Mean time (seconds)

Concentric circles 7.4

Triangle in circle 28.9

Balloon 7.1

Tree on slope 21.4

House 19.7

Table 4.2: Times taken by an expert using a commercial CAD system.

For each task, the time taken by the expert user on an commercial CAD system was faster
(but not dramatically so) than the sample mean of both sets of data for my system.

To determine whether this difference between the sample mean and the time taken by an
expert user on a different constraint-based CAD system is the result of normal random
variation, or a usability difference, confidence intervals were calculated. This was done
using a simplified form of the t-test[22]. Calculation of confidence intervals did not es-
tablish that the commercial constraint-based CAD system is more usable than my system
– the difference between the sample means of each task for my system and time taken on
the commercial system would appear to be from normal random variation.

While this test showed no clear usability advantage of one system over the other, com-
mercial constraint-based CAD systems have a sufficiently high abstraction barrier that
many architectural firms employ professional programmers to use the software. Since
novice users managed to achieve comparable results using my system to those of an ex-
pert using an commercial constraint-based CAD system, I believe that my system would
exhibit a clear usability advantage if both systems were tested using novice users.
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4.4 Summary

This chapter described the testing and evaluation techniques employed in this project.
In addition, examples of the the type of geometric figures that can be created using the
completed system were included. Although it was not possible to prove a significant
usability advantage over commercial constraint-based CAD systems, the project has been
successful in meeting the requirements outlined in Section 2.1.1, as well as the overall
aims stated in my project proposal.
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Conclusion

The aim of this project was to design a constraint-based CAD system with a contraint rep-
resentation that has a lower abstraction barrier than commercial constraint-based CAD
packages. Such a package would have applications in the architectural and design indus-
tries, as was described in the Introduction chapter.

5.1 Achievements

A constraint-based CAD package satisfying the overall aim of the project, as well as the
requirements of Section 2.1.1 was successfully designed, implemented, and subjected to
usability testing.

A novel approach was taken to the design of the visual representation of constraints,
by adopting a cross-disciplinary approach and using research on the display of layered
information for air traffic control screens[26]. Constraints are represented as translucent
infilled areas bounding the geometry they constrain.

The QuickPlan algorithm[34] was used as the basis of the constraint solver, enabling hi-
erarchies of multi-way multi-output constraints to be satisfied with worst case time com-
plexity of O(C

2

), where C is the number of constraints in the system. To my knowledge,
this is a completely new approach, since the QuickPlan algorithm has not been used in
any other constraint-based CAD systems to date.

To demonstrate the use of my constraint representation, as well as the power of the
QuickPlan algorithm, a drawing package and several constraints were implemented, al-
lowing geometric structures to be created and saved to disk.

Usability testing demonstrated that novice users can indeed use the system implemented,
and achieve comparable results to an expert performing the same tasks on a commercial
constraint-based CAD system. This is a significant step forward, since it is unlikely that
novice users would be able to use such commercial systems without detailed training.
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5.2 Future Development

Future work includes implementing a larger suite of constraints and a cyclic subsolver
to enable constraint systems involving simultaneous linear equations to be solved. In
addition, further research on constraint-based CAD systems from a point of view of end-
user programming should be carried out. It would be of interest to compare the times
taken by a sample of working architects to create simple geometric structures using my
system with the times they take to perform the same tasks using commercial constraint-
based CAD systems: my system is likely to provide a significant usability improvement.
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A

QuickPlan’s Planning Phase

The planning stage of the algorithm is best described in graph-theoretic terms. Consider
the constraint system to be an undirected graph, G

C

= (V;C;E), where the vertices of
the graph, V and C, are sets of variables and constraints, and the edges, E, represent the
relationship between the variables and constraints (i.e. if there is an edge between the
vertex representing variable v and the vertex representing constraint 
, then constraint 

contains variable v). Assigning methods to constraints is equivalent to directing G

C

such
that a directed edge from a variable to a constraint represents the input to a method, and a
directed edge from a constraint to a variable signifies that the selected constraint method
determines the value of that variable. A constraint system is satisfiable if one method
can be selected for each constraint resulting in a directed, acyclic constraint graph with
no variable having more than one incoming edge. Such constraint graphs are known as
solution graphs [34].

QuickPlan makes use of constraint hierarchies (see Section 2.2.3) to handle under-constrained
systems. QuickPlan also assumes the existence of an implicit stay constraint 1 attached to
every variable not determined by an explicit constraint. Therefore, every variable can
always be considered to be determined by at least one constraint.

Constraint systems can have more than one valid solution graph. In such cases, Quick-
Plan identifies the “best” solution using the locally-graph-better comparator [34]. Consider
the required constraints in a solution graph to be of level C

0

, and the non-required con-
straints to be at levels C

1

through C

n

. A solution graph is locally-graph-better than other
solution graphs if, for a given constraint hierarchy, the solution graph satisfies all the
constraints satisfied by the other solution graphs at levels C

0

through C

k

, for some k � n,
as well as at least one more constraint at level k. Occasionally, the locally-graph-better
comparator will not identify one best solution. In this case, other techniques (such as stay
constraints) are used.

The main principle behind the operation of the planning stage is propagation of degrees
of freedom. For each constraint to be satisfied, the algorithm identifies the method be-
longing to that constraint with the smallest number of outputs, and searches for a set of
free variables 2 consisting of those outputs. If such a set is found, this method is chosen to
satisfy the constraint, and the constraint and its variables are removed from the constraint
graph. If the algorithm reaches a point where no constraint has sufficient free variables
to be assigned a method, QuickPlan does not immediately terminate, but instead retracts
the weakest strength constraint from the subgraph (and saves it onto a priority queue)
and then attempts to satisfy the new subgraph. This sequence of elimination and re-
traction steps is repeated until all constraints have been eliminated and a solution graph
remains, or the algorithm encounters a cyclic subgraph of required constraints in which
no constraint has sufficient free variables to be assigned a method.

1A stay constraint constrains a variable to remain unchanged.
2A free variable is a variable that is referenced by only one constraint.
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If the constraint solver succeeds in enforcing the constraint but retracts constraints in the
process, then the constraint solver attempts to enforce any retracted constraints since en-
forcing one or more of these retracted constraints would lead to a locally-graph-better so-
lution. The set of potentially enforceable retracted constraints is restricted to constraints
that satisfy the following criteria:

� The constraint must be of equal or lesser strength than the newly enforced con-
straint (if a higher strength constraint were to become enforceable then the previous
solution would not have been a locally-graph better solution).

� The constraint must be downstream of the newly enforced constraint’s variables
(since the act of enforcing the newly enforced constraint may have affected down-
stream variables, thus allowing some downstream constraint to be enforced).

� The constraint must have a weaker upstream constraint (the weaker constraint can
then be retracted, allowing other constraints to determine its variables, resulting in
all downstream constraints of the weaker constraint becoming potentially enforce-
able).

To further improve efficiency, QuickPlan may annotate each variable with a walkbound,
the strength of the weakest upstream constraint of the variable. If walkbounds are used,
QuickPlan will only attempt to enforce a retracted constraint that has a method with an
output variable of walkbound of strength less than its strength. This technique is not
used for constraint graphs containing a small number of constraints.
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QuickPlan Pseudo-Code

Pseudo-code for the QuickPlan algorithm is presented below. For more details regarding
the algorithm, see [34].

collectUpstreamConstraintsuses a depth first search to collect enforced constraints
upstream of the constraint to be enforced:

collectUpstreamConstraints(Constraint cn)
cn.mark = visitedMark

// all upstream constraints whose strength is less than the strength
// of the constraint to be enforced should be added to
// retractableCnsQueue
if (cn.strength < cnToEnforce.strength)

retractableCnsQueue = retractableCnsQueue [ fcng
for each v 2 cn.variables

// compute v’s numConstraints field
if (v.mark == visitedMark)

v.numConstraints = v.numConstraints+1;
else

v.mark = visitedMark
v.numConstraints = 1

e = v.determinedBy
if ((e != null) && (e.mark != visitedMark))

collectUpstreamConstraints(e)

// input variables not being visited for the first time and
// variables that have not yet been visited by any other constraint
// than the constraint that outputs them are potential free variables
else if (v.numConstraints == 1)

freeVariableSet = freeVariableSet [ fvg

collectDownstreamUnenforcedConstraints collects unenforced constraints that
are either attached to or downstream of v, and whose strength is less than or equal to the
strongest constraint retracted to satisfy a newly enforced constraint:

collectDownstreamUnenforcedConstraints(Variable v)
v.mark = searchMark
unenforcedCnsQueue = unenforcedCnsQueue

[ fcn j cn 2 v.constraints, cn.selectedMethod == null,
cn.strength � strongestRetractedStrengthg

for each cn 2 v.constraints
if ((cn.selectedMethod != null) && (cn.mark != searchMark))

cn.mark = searchMark
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for each w 2 cn.selectedMethod.outputs
if (w.mark != searchMark)

collectDownstreamUnenforcedConstraints(w)

Variable v’s walkbound is the minimum of the strength of the constraints outputting v
and the minimum strength constraint that would have to be revoked to enforce a method
that does not currently output that variable:

computeWalkbound(Variable v)
cn = v.determinedBy
v.walkbound = cn.strength
for each method 2 fmt j mt 2 cn.methods, v 62 mt.outputsg

maxWalkbound = max fw.walkbound j w 2 (mt.outputs
- cn.selectedMethod.outputs)g

v.walkbound = min(v.walkbound, maxWalkbound)

collectUnenforcedConstraints collects unenforced constraints and prunes them
using walkbounds if necessary:

collectUnenforcedConstraints(Set undeterminedVars, Constraint newlyEnforcedCn)
for each v 2 newlyEnforcedCn.selectedMethod.outputs [ undeterminedVars

collectDownstreamUnenforcedConstraints(v)

// if the total number of unenforced cosntraints exceeds
// WALKBOUND_THRESHOLD the walkbounds are used to cull the set of
// unenforced constraints.
if (junenforcedCnsQueuej > WALKBOUND_THRESHOLD)

for each var 2 newlyEnforcedCn.selectedMethod.outputs
if (newlyEnforcedCn is an input or stay constraint)

var.walkbound = newlyEnforcedCn.strength
else

var.walkbound = strongestRetractedStrength
propagate walkbounds to variables downstream of variables in

undeterminedVars [ newlyEnforcedCn.selectedMethod.outputs
unenforcedCnsQueue = unenforcedCnsQueue -

fcn j 8 mt.outputs 2 cn.methods 9w 2 mt such that
w.walkbound � cn.strengthg

multiOutputPlanner propagates degrees of freedom to find acyclic solutions to sets
of constraints:

multiOutputPlanner()
while ((cnToEnforce.selectedMethod == null) && (freeVariableSet!= ;))

// remove an arbitrary element from the free variable set
freeVar = removeElement(freeVariableSet)
if (freeVar.numConstraints == 1)

cn = the constraint to which freeVar belongs whose mark
equals visitedMark

if (9 mt 2 cn.methods such that 8 var 2 mt.outputs,
var.numConstraints == 1)

mt = the method withh the smallest outputs that satisfies
the above condition

// any variable that is no longer output by cn and which

50



APPENDIX B. QUICKPLAN PSEUDO-CODE

// does not become a free variable is a potentially
// undetermined variable
for each var 2 cn.selectedMethod.outputs - mt.outputs

var.determinedBy = null
if (var.numConstraints > 2)

potentialUndeterminedVars =
potentialUndeterminedVars [ fvarg

else
var.mark = potentiallyUndetermined

// keep track of redetermined constraints so they can be
// undone if necessary
undoStack.push(cn)
undoStack.push(cn.selectedMethod)
cn.selectedMethod = mt

// the output variables’ determinedBy fields must be set so
// that collectUpstreamConstraints can perfrom its
// reverse depth first search
for each outputs 2 mt.outputs

output.determinedBy = cn
for each var 2 cn.variables

var.numConstraints = varNumConstraints - 1
if (var.numConstraints == 1)

freeVariableSet = freeVariableSet [ fvarg

// a constraint can be removed from the set of
// unsatisfied constraints by setting its mark field to null
cn.mark = null

// a variable that cannot be made the output of a constraint
// and which is marked potentiallyUndetermined is a potentially
// undetermined variable
else if (freeVar.mark == potentiallyUndetermined)

potentialUndeterminedVars = potentialUndeterminedVars [ ffreeVarg
else if (freeVar.mark == potentiallyUndetermined)

potentialUndeterminedVars = potentialUndeterminedVars [ ffreeVarg

constraintHierarchyPlanner is a propagate degrees of freedom algorithm that may
retract constraints so that a higher strength constraint can be satisfied:

// ceiling strength is the maximum strength constraint that may be
// retracted in order to enforce a constraint
constraintHierarchyPlanner(int ceilingStrength)

multiOutputPlanner()
while ((cnToEnforce.selectedMethod == null) &&

(retractableCnsQueue != null))
cn = deleteMin(retractableCnsQueue)

// indicate that the constraint has been removed from the set
// of unsatisfied constraints by setting its mark field to null
cn.mark = null
strongestRetractedConstraintStrength =

max(strongestRetractedConstraintStrength, cn.strength)

// the outputs of the retracted constraint’s selected method
// become potentially undetermined variables
for each output 2 cn.selecteMethod.outputs
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output.determinedBy = null
if (output.numConstraints > 2)

potentialUndeterminedVars =
potentialUndeterminedVars [ foutputg

else
output.mark = potentiallyUndetermined

// keep tract of redetermined constraints so they can be
// undone if necessary
undoStack.push(cn)
undoStack.push(cn.selectedMethod)
cn.selectedMethod = null
for each 2 cn.variables

v.numConstraints = v.numConstraints - 1
if (v.numConstraints = 1)

freeVariableSet = freeVariableSet [ fvg
multiOutputPlanner()

constraintHierarchySolver attempts to find a locally-graph-better solution:

constraintHierachySolver()
while (UnenforcedCnsQueue == ;)

cnToEnforce = deleteMax(unenforcedCnsQueue)
visitedMark = generateUniqueMark()
searchMark = generateUniqueMark()
strongestRetractedConstraint = WEAKEST_CONSTRAINT_STRENGTH
potentialUndeterminedVars = ;

retractableCnsQueue = ;

undoStack = ;

1

collectUpstreamConstraints(cnToEnforce)

// remove from free variable set any variables belonging to
// more that one constraint
freeVariableSet = freeVariableSet - fv j v.numConstraints > 1g
constraintHierarchyPlanner(cnToEnforce.strength)

// if the constraint could not be enforced...
if (cnToEnforce.selectedMethod == null)

// undo alterations to constraint graph
while (undoStack != ;)

restoredMethod = undoStack.pop()
cn = undoStack.pop()
for each var 2 cn.selectedMethod.outputs

var.determinedBy = null
for each var 2 restoredMethod.outputs

var.determinedBy = cn
cn.method = restoredMethod

// collect unenforced constraints only if a constraint was
// retracted and the enforced constraint is not an input constraint
else if ((strongestRetractedConstraint.strength >

WEAKEST_CONSTRAINT_STRENGTH) && (cnToEnforce is not an input
constraint that overrides a previously enforced stay constraint)

// collect unenforced constraints downstream of either

1This line is not in the pseudo-code presented in [34], yet the algorithm does not function correctly without it.
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// the newly undetermined variables, or the outputs of the
// newly enforced constraint
undeterminedVariables = fw j w 2 potentialUndeterminedVars,

w.determinedBy == nullg [ f w j w 2 freeVariableSet,
w.determinedBy == null, w.mark == potentiallyUndeterminedg

collectUnenforcedConstraints(undeterminedVariables, cnToEnforce)

addConstraint and removeConstraint add and remove constraints from the con-
straint system repectively:

addConstraint(Constraint cnToAdd)
for each v 2 cnToAdd.variables

v.constraints = v.constraints [ fcnToAddg
if 9 mt 2 cnToAdd.methods such that for each v 2 mt.outputs,

jv.constraintsj = 1
cnToAdd.selectedMethod = mt
for each v 2 mt.outputs

v.determinedBy = cnToAdd
else

unenforcedCnsQueue = fcnToAddg
constraintHierarchySolver()
if ((cnToAdd.selectedMethod == null) && (cnToAdd.strength == required))

print(constraint could not be added)

removeConstraint(Constraint cnToRemove)
unenforcedCnsQueue = ;

strongestRetractedStrength = cnToRemove.strength
for each v 2 cnToRemove.variables

v.constraints = v.constraints - fcnToRemoveg
if (v.determinedBy == cnToRemove)

collectDownstreamUnenforcedConstraints(cnToRemove)
v.determinedBy = null2

constraintHierarchySolver()

2This line is not in the pseudo-code presented in [34], yet the algorithm does not function correctly without it.
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Constraints

C.1 Distance Between Two Points

The DistanceConstraint class constrains a DoublePoint2D, P1, to be a certain dis-
tance from another DoublePoint2D, P2, and vice versa. The angle of inclination of the
line between P1 and P2 remains unchanged when the constraint is executed (see Fig-
ure C.1).

P1 = (x1, y1)

= (x2, y2)P2 old

P2 new θ

d

P2

new

= (x1 + d sin �; y1 + d 
os �)

Figure C.1: Constraining P2 to be a distance d from P1.

C.2 Distance Between a Point and Line

The PointLineDistanceConstraint class constrains a DoublePoint2D,P1, to be a
certain distance from a DoubleLine2D (see Figure C.2).
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P1 = (x1, y1)

P2 = (x2, y2)

= (x3, y3)P3 old

P3 new

P3 new θ

d

P3

new

=

8

<

:

(x1 + t (x2 � x1) + d sin �; y1 + t (y2 � t1) + d 
os �) : 0 < t < 1

(x1 + d sin �; y1 + d 
os �) : t � 0

(x2 + d sin �; y2 + d 
os �) : t � 1

where t = (x3 � x1)(x1 � x2) + (y3 � y1)(y1 � y2)

(x2 � x1)(x1 � x2) + (y2 � y1)(y1 � y2)

Figure C.2: Constraining P3 to be a distance d from the line segment between P1 and P2.

C.3 Angle of Inclination of a Line

The LineAngleConstraint class constraints the angle of inclination of a Double-
Line2D. The length of the DoubleLine2D is kept constant and the location of one or
other of its DoublePoint2D end-points is changed (see Figure C.3).

= (x2, y2)P2 old

P2 new

θ

l

P1 = (x1, y1)

P2

new

= (x1 + l sin �; y1 + l 
os theta)

Figure C.3: Constraining the angle of inclination of the line segment between P1 and P2 to be �.
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C.4 Point on Mid-Point of a Line Segment

The MidPointLineConstraint class constrains a DoublePoint2D to lie at the mid-
point of a DoubleLine2D (see Figure C.4).

P1 = (x1, y1)

P2 = (x2, y2)= (x3, y3)P3 old

P3 new

l/2

l/2

P3

new

= (x1 +

(x2 � x1)

2

; y1 +

(y2 � t1)

2

)

Figure C.4: Constraining P3 to lie at the mid-point of the line segment between P1 and P2.

C.5 Point on the Circumference of Circle

The PointOnCircleConstraint class constrains a DoublePoint2D to lie anywhere
on a DoubleCircle2D (see Figure C.5).

θ

= (x, y)P old

(cx, cy)

P new
r

P3

new

= (
x+ r sin �; 
y + r 
os theta)

Figure C.5: Constraining a point, P , to lie on a circle of radius r.
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C.6 Point on a Line Segment

The PointOnLineConstraint class constrains a DoublePoint2D to lie anywhere on
a DoubleLine2D (see Figure C.6).

P1 = (x1, y1)

P2 = (x2, y2)
= (x3, y3)P3 old

90°

P3 new

P3

new

=

8

<

:

(x1 + t (x2 � x1); y1 + t (y2 � t1)) : 0 < t < 1

(x1; y1) : t � 0

(x2; y2) : t � 1

where t = (x3 � x1)(x1 � x2) + (y3 � y1)(y1 � y2)

(x2 � x1)(x1 � x2) + (y2 � y1)(y1 � y2)

Figure C.6: Constraining a point, P3, to lie on the line segment between P1 and P2.

C.7 Point on a Line Segment Extended

The PointOnLineExtendedConstraintclass constrains a DoublePoint2D to lie any-
where on the extension of a DoubleLine2D (see Figure C.7).
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P1 = (x1, y1)

P2 = (x2, y2)
= (x3, y3)P3 old

90°

P3 new

P3

new

= (x1 + t (x2 � x1); y1 + t (y2 � t1))

where t = (x3 � x1)(x1 � x2) + (y3 � y1)(y1 � y2)

(x2 � x1)(x1 � x2) + (y2 � y1)(y1 � y2)

Figure C.7: Constraining a point, P3, to lie on the line segment between P1 and P2 extended.
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Informal User Testing

Throughout the development process, informal user testing was used to determine whether
design decisions made were appropriate and would facilitate solution of the overall de-
sign problem.

� Usability properties to be evaluated were identified.

� Prototypes were designed to have sufficient functionality to allow the user to per-
form tasks relating to the usability properties of interest. Java was used as the pro-
totyping tool, enabling prototypes to be refined into the final product.

� Experiments were devised to test the usability properties of interest as fully as pos-
sible. The users to participate in the testing were selected.

� Direct observation and think-aloud studies were used to collect data while users
were performing the tasks devised to test usability.

� Analysis of data obtained was performed, to identify of good and bad features of
the design.

� Conclusions were drawn about which aspects of the design needed changing and
the nature of these changes. Aspects of the design that were identified as successful
were recorded, so they could be retained in subsequent revisions of the prototype.

This six-stage framework was used to evaluate both the drawing package and visual
representation of constraints, as well as the system as a whole.
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Scripts Used During Experimental
Evaluation

The script read to subjects testing my system to provide an overview of my constraint-
based CAD system is below:

This is a constraint-based drawing package. You may create points, line segments
and circles. Points can be created by clicking the mouse in the desired location. Line
segments and circles can be created by pressing the mouse and dragging the mouse.
Points, line segments and circles may all be constrained.

You can:

� Fix a point’s location.

� Fix the distance between two points.

� Fix the distance between a point and a line segment.

� Constrain two points to be coincident.

� Constrain a point to lie at the mid-point of a line segment.

� Constrain a point to lie on a line segment.

� Constrain a point to lie on a line segment extended.

� Constrain a point to lie on the circumference of a circle.

� Constrain the angle of inclination of an angle.

� Constrain a line to be horizontal.

� Constrain a line to be vertical.

To create a constraint, select the appropriate constraint creation tool from the con-
straint toolbar and then click on the geometric entity or entities to be constrained.

The scripts read to each subject testing my system and to the expert performing the same
tasks on a commercial constraint-based CAD system prior to undertaking each task:

Task 1: I would like you to draw two concentric circles.

Task 2: I would like you to draw a triangle within a circle. The vertices of the triangle
should lie on the circumference of the circle. You should create the triangle first and
then constrain the vertices of the triangle to lie on the circumference of the circle.

Task 3: I would like you to draw a balloon. The string of the balloon should be a fixed
length, and should remain in contact with the balloon at all times.
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Task 4: I would like you to draw a tree on a slope. The tree trunk should be vertical at
all times. The tree trunk should be joined onto the slope at all times. The tree trunk
should be joined onto the leafy part of the tree at all times.

Task 5: I would like you to draw a house with a pitched roof. The floor of the house
should be horizontal, and the walls vertical. The walls should remain in contact with
the floor at all times. The roof should remain in contact with the walls at all times.
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Sample Code

F.1 QuickPlan’s Execution Phase

After a constraint is removed or a new constraint is added, the constraints in the system
are topologically sorted using the following methods:

private Vector topologicallySortConstraints() {
int[] color = new int[constraints.size()];
Vector sortedVertices = new Vector();

for (int i=0; i<constraints.size(); i++) {
Constraint cn = (Constraint) constraints.elementAt(i);
color[i] = WHITE;

}

for (int i=0; i<constraints.size(); i++) {
if (color[i] == WHITE)

depthFirstSearchVisit(i, color, sortedVertices);
}

return sortedVertices;
}

private void depthFirstSearchVisit(int index, int[] color, Vector
sortedVertices) {

color[index] = GREY;

Constraint cn = (Constraint) constraints.elementAt(index);

if (cn.getSelectedMethod() != null) {
for (int i=0; i<cn.getSelectedMethod().outputs.length; i++) {

DoublePoint2D v = cn.getSelectedMethod().outputs[i];

for (int j=0; j<v.getConstraints().size(); j++) {
int newIndex = constraints.indexOf(v.getConstraints().elementAt(j));
if (color[newIndex] == WHITE) {

depthFirstSearchVisit(newIndex, color, sortedVertices);
}

}
}
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color[index] = BLACK;
sortedVertices.addElement(new Integer(index));

}
}

To enforce the constraints in the system, the enforce method of each constraint must be
invoked in topological order:

public void enforceConstraints(Vector sortedVertices) {
for (int i=sortedVertices.size()-1; i>=0; i--)

((Constraint) sortedVertices.elementAt(i)).enforce();
}

F.2 MidPointLineConstraint

The MidPointLineConstraint class is shown below:

import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;

import java.lang.Math;

public class MidPointLineConstraint extends Constraint {
private Color midPtLineConstraintColor = new Color(211, 159, 221);
private DoubleLine2D line;

public MidPointLineConstraint(DoublePoint2D point,
DoubleLine2D line, int strength) {

variables = new DoublePoint2D[1];
methods = new Method[1];

variables[0] = point;
variables[0].setNumConstraints(variables[0].getNumConstraints()+1);

this.line = line;
this.methods[0] = new Method1();

if (variables[0].isPartOfObject() &&
!variables[0].getObjectIsPartOf().isAuxiliary()) {

isAuxiliary = false;
}

else {
isAuxiliary = true;

}

stay = false;
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inputFlag = true;

setSelectedMethod(null);
setStrength(strength);

}

public class Method1 extends Method {
private double x1, x2, y1, y2, x, y;

public Method1() {
outputs = new DoublePoint2D[1];
outputs[0] = variables[0];

}

public void execute() {
x1 = ((DoublePoint2D) line.getP1()).x;
y1 = ((DoublePoint2D) line.getP1()).y;
x2 = ((DoublePoint2D) line.getP2()).x;
y2 = ((DoublePoint2D) line.getP2()).y;

x = x1 + (x2-x1)/2;
y = y1 + (y2-y1)/2;

variables[0].x = x;
variables[0].y = y;

}
}

public DoubleLine2D getLine() {
return this.line;

}

public void drawConstraint(Graphics2D g2D, Drawing drawing) {

// buffered image to contain constraint representation
BufferedImage cnImage = new BufferedImage(40, 40,

BufferedImage.TYPE_INT_ARGB);

// main shape of constraint representation
Area outerArea = new Area(new Ellipse2D.Double(variables[0].x-18,

variables[0].y-18,
36, 36));

// constraint fill
Area innerArea = new Area(new Rectangle2D.Double(variables[0].x-7,

variables[0].y-7,
14, 14));

Graphics2D cnImageGraphics2D = cnImage.createGraphics();

// translate it to the correct location for rendering on the
// Drawing’s Graphics2D context
cnImageGraphics2D.translate(-(variables[0].x-18)+2,

-(variables[0].y-18)+2);

cnImageGraphics2D.setColor(midPtLineConstraintColor);
cnImageGraphics2D.fill(outerArea);
cnImageGraphics2D.setPaint(Color.white);
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cnImageGraphics2D.fill(innerArea);

// create a new BufferedImage to be used as the destination
// BufferedImage in the convolution operation.
BufferedImage destImage = new BufferedImage(40, 40,

BufferedImage.TYPE_INT_ARGB);

// values to be used in filter kernel
float[] data = {0.0625f, 0.125f, 0.0625f,

0.125f, 0.25f, 0.125f,
0.0625f, 0.125f, 0.0625f };

// create filter kernel
Kernel kernel = new Kernel(3, 3, data);

// perform convolution
ConvolveOp convolve = new ConvolveOp(kernel);
convolve.filter(cnImage, destImage);

g2D.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,
(float) 0.45));

g2D.drawImage(destImage, (int) variables[0].x-20,
(int) variables[0].y-20, drawing);

g2D.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER,
(float) 1.0));

}
}
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